Brain midline shift (MLS) is one of the most critical factors to be considered for clinical diagnosis and treatment decision-making for intracranial hemorrhage. Existing computational methods on MLS quantification not only require intensive labeling in millimeter-level measurement but also suffer from poor performance due to their dependence on specific landmarks or simplified anatomical assumptions. In this paper, we propose a novel semi-supervised framework to accurately measure the scale of MLS from head CT scans. We formulate the MLS measurement task as a deformation estimation problem and solve it using a few MLS slices with sparse labels. Meanwhile, with the help of diffusion models, we are able to use a great number of unlabeled MLS data and 2793 non-MLS cases for representation learning and regularization. The extracted representation reflects how the image is different from a non-MLS image and regularization serves an important role in the sparse-to-dense refinement of the deformation field. Our experiment on a real clinical brain hemorrhage dataset has achieved state-of-the-art performance and can generate interpretable deformation fields.
translated by 谷歌翻译
变压器架构已成为广泛的自然语言处理〜(NLP)模型的基本要素。随着大型NLP模型的趋势,增加的内存和计算成本阻碍了其在资源有限设备上的有效部署。因此,变压器量化吸引了广泛的研究兴趣。最近的工作认识到结构化的离群值是量化性能的关键瓶颈。但是,他们提出的方法增加了开销的计算,仍然将异常值留在那里。为了从根本上解决这个问题,本文深入研究了异常值的固有诱因和重要性。我们发现$ \ boldsymbol \ gamma $ in LaiserNorm(ln)充当异常值的有罪放大器,而异常值的重要性差异很大,其中一些代币提供的一些异常值覆盖了大面积,但可以牢固地夹住一个大面积,但可以将其夹住,而没有负面影响。 。在这些发现的激励下,我们提出了一个异常抑制框架,其中包括两个组成部分:伽玛迁移和象征性的剪辑。伽马迁移将异常放大器迁移到等效转换中的后续模块,从而导致更量化的模型而没有任何额外的负担。令牌的剪辑利用了令牌范围的较大差异,并设计了代币的粗到精细管道,以有效的方式获得了具有最小的最终量化损失的剪辑范围。该框架有效地抑制了异常值,可以在插件模式下使用。广泛的实验证明,我们的框架超过了现有作品,并且首次将6位训练后的BERT量化量化推向完整精确度(FP)级别。我们的代码可在https://github.com/wimh966/outlier_suppression上找到。
translated by 谷歌翻译
深度学习方法论为高光谱图像(HSI)分析社区的发展做出了很大贡献。但是,这也使HSI分析系统容易受到对抗攻击的影响。为此,我们在本文中提出了一个掩盖的空间光谱自动编码器(MSSA),根据自我监督的学习理论,以增强HSI分析系统的鲁棒性。首先,进行了一个掩盖的序列注意学习模块,以促进沿光谱通道的HSI分析系统的固有鲁棒性。然后,我们开发了一个具有可学习的图形结构的图形卷积网络,以建立全局像素的组合。这样,每种组合中的所有相关像素都可以分散攻击效果,并且在空间方面可以实现更好的防御性能。最后,为了提高防御能力并解决有限标记样品的问题,MSSA采用光谱重建作为借口任务,并以自我监督的方式适合数据集。 - 高光谱分类方法和代表性的对抗防御策略。
translated by 谷歌翻译
最近的研究表明,监督学习可能是设计用于高维非线性动态系统的最佳反馈控制器的有效工具。但是神经网络控制器的行为仍然不太了解。特别是,一些具有高测试精度的神经网络甚至无法局部稳定动态系统。为了应对这一挑战,我们提出了几种新型的神经网络体系结构,我们显示出保证局部渐近稳定性,同时保留了学习最佳反馈政策半全球的近似能力。通过两个高维非线性最佳控制问题的数值模拟,将所提出的体系结构与标准的神经网络反馈控制器进行了比较:稳定不稳定的汉堡型部分偏差方程,以及无人驾驶汽车的高度和课程跟踪。模拟表明,即使经过良好的训练,标准的神经网络也可能无法稳定动力学,而所提出的体系结构始终至少在本地稳定。此外,发现拟议的控制器在测试中几乎是最佳的。
translated by 谷歌翻译
随机部分微分方程(SPDE)是在包括大气科学和物理学在内的许多领域建模动力学的重要工具。神经操作员,几代神经网络具有无限维空间之间学习图的能力,是解决参数PDE的强大工具。但是,他们缺乏建模SPDE的能力,而SPDE通常由于驾驶噪声而定期较差。由于规律性结构的理论在分析SPDE方面取得了巨大成功,并提供了概念模型的特征向量,使SPDES的解决方案良好,我们提出了具有规律性结构(NORS)的神经操作员,该神经操作员结合了用于建模由SPDES驱动的动力学的功能向量。我们对各种SPDE进行实验,包括动态PHI41模型和2D随机Navier-Stokes方程,结果表明NORS是分辨率不变的,有效的,并且在较小量的数据级较低的误差中降低了一个数量级误差。
translated by 谷歌翻译
低计数正电子发射断层扫描(PET)数据的图像重建是具有挑战性的。内核方法通过在迭代宠物图像重建的前向模型中结合图像先前信息来解决挑战。已经开发出并证明了内核预期的最大化(KEM)算法是有效且易于实施的。进一步改进内核方法的常见方法是添加明确的正则化,但是导致复杂的优化问题。在本文中,我们通过使用深度系数来提出内核方法的隐含正则化,其使用卷积神经网络表示宠物前进模型中的内核系数图像。为解决基于最大似然性的神经网络的重建问题,我们应用优化转移原理来推导神经KEM算法。算法的每次迭代包括两个单独的步骤:从投影数据的图像更新的KEM步骤和图像域中的深度学习步骤,用于使用神经网络更新内核系数图像。这种优化算法保证单调地增加数据可能性。计算机模拟和实际患者数据的结果表明神经KEM可以优于现有的KEM和深度图像的先前方法。
translated by 谷歌翻译
有很好的参数来支持声明,特征表示最终从一般到深度神经网络(DNN)的特定转换,但这种转变仍然相对缺乏缺陷。在这项工作中,我们向理解特征表示的转换来移动一个微小的步骤。我们首先通过分析中间层中的类分离,然后将类别分离过程作为动态图中的社区演变进行了描述。然后,我们介绍模块化,是图形理论中的常见度量,量化社区的演变。我们发现,随着层更深,而是下降或达到特定层的高原,模块化趋于上升。通过渐近分析,我们表明模块化可以提供对特征表示转换的定量分析。通过了解特征表示,我们表明模块化也可用于识别和定位DNN中的冗余层,这为图层修剪提供了理论指导。基于这种鼓舞人心的发现,我们提出了一种基于模块化的层面修剪方法。进一步的实验表明,我们的方法可以修剪冗余层,对性能的影响最小。该代码可在https://github.com/yaolu-zjut/dynamic-graphs-construction中获得。
translated by 谷歌翻译
模型量化已成为加速深度学习推理的不可或缺的技术。虽然研究人员继续推动量化算法的前沿,但是现有量化工作通常是不可否认的和不可推销的。这是因为研究人员不选择一致的训练管道并忽略硬件部署的要求。在这项工作中,我们提出了模型量化基准(MQBench),首次尝试评估,分析和基准模型量化算法的再现性和部署性。我们为实际部署选择多个不同的平台,包括CPU,GPU,ASIC,DSP,并在统一培训管道下评估广泛的最新量化算法。 MQBENCK就像一个连接算法和硬件的桥梁。我们进行全面的分析,并找到相当大的直观或反向直观的见解。通过对齐训练设置,我们发现现有的算法在传统的学术轨道上具有大致相同的性能。虽然用于硬件可部署量化,但有一个巨大的精度差距,仍然不稳定。令人惊讶的是,没有现有的算法在MQBench中赢得每一项挑战,我们希望这项工作能够激发未来的研究方向。
translated by 谷歌翻译
最近的研究表明,监督学习可以是为高维非线性动态系统设计最佳反馈控制器的有效工具。但是这些神经网络(NN)控制器的行为仍未得到很好的理解。在本文中,我们使用数值模拟来证明典型的测试精度度量没有有效地捕获NN控制器稳定系统的能力。特别是,具有高测试精度的一些NN不能稳定动态。为了解决这个问题,我们提出了两个NN架构,该架构在局部地近似线性二次调节器(LQR)。数值模拟确认了我们的直觉,即建议的架构可靠地产生稳定反馈控制器,而不会牺牲最佳状态。此外,我们介绍了描述这种NN控制系统的一些稳定性特性的初步理论结果。
translated by 谷歌翻译
差分方程管理的学习动态对于预测和控制科学和工程系统来说至关重要。神经常规方程(节点)是一种与微分方程集成的深度学习模型,最近是由于其对不规则样本的鲁棒性及其对高维输入的灵活性而流行的学习动态。然而,节点的训练对数值求解器的精度敏感,这使得节点的收敛不稳定,特别是对于不稳定的动态系统。在本文中,为了减少对数值求解器的依赖,我们建议提高节点训练中的监督信号。具体地,我们预先训练神经差分运算符(NDO)以输出衍生物的估计用作额外的监督信号。 NDO在一类基础函数上预先培训,并将这些功能的轨迹样本之间的映射学习到其衍生物。为了利用来自NDO的轨迹信号和估计的衍生工具,我们提出了一种称为NDO-Node的算法,其中损耗函数包含两个术语:真正轨迹样本的适应性以及由输出的估计衍生物的适应度预先训练的NDO。各种动力学的实验表明,我们提出的NDO-Node可以一致地用一个预先训练的NDO来改善预测精度。特别是对于僵硬的杂散,我们观察到与其他正则化方法相比,NDO-Node可以更准确地捕获动态的过渡。
translated by 谷歌翻译